Record maximum oscillation frequency in C-face epitaxial graphene transistors.

نویسندگان

  • Zelei Guo
  • Rui Dong
  • Partha Sarathi Chakraborty
  • Nelson Lourenco
  • James Palmer
  • Yike Hu
  • Ming Ruan
  • John Hankinson
  • Jan Kunc
  • John D Cressler
  • Claire Berger
  • Walt A de Heer
چکیده

The maximum oscillation frequency (fmax) quantifies the practical upper bound for useful circuit operation. We report here an fmax of 70 GHz in transistors using epitaxial graphene grown on the C-face of SiC. This is a significant improvement over Si-face epitaxial graphene used in the prior high-frequency transistor studies, exemplifying the superior electronics potential of C-face epitaxial graphene. Careful transistor design using a high κ dielectric T-gate and self-aligned contacts further contributed to the record-breaking fmax.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

100-GHz transistors from wafer-scale epitaxial graphene.

The high carrier mobility of graphene has been exploited in field-effect transistors that operate at high frequencies. Transistors were fabricated on epitaxial graphene synthesized on the silicon face of a silicon carbide wafer, achieving a cutoff frequency of 100 gigahertz for a gate length of 240 nanometers. The high-frequency performance of these epitaxial graphene transistors exceeds that o...

متن کامل

Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC „0001... for high frequency transistors

Up to two layers of epitaxial graphene have been grown on the Si-face of 2 in. SiC wafers exhibiting room-temperature Hall mobilities up to 2750 cm2 V−1 s−1, measured from ungated, large, 160 200 m2 Hall bars, and up to 4000 cm2 V−1 s−1, from top-gated, small, 1 1.5 m2 Hall bars. The growth process involved a combination of a cleaning step of the SiC in a Si-containing gas, followed by an annea...

متن کامل

Corrigendum: Improved Drain Current Saturation and Voltage Gain in Graphene–on–Silicon Field Effect Transistors

Graphene devices for radio frequency (RF) applications are of great interest due to their excellent carrier mobility and saturation velocity. However, the insufficient current saturation in graphene field effect transistors (FETs) is a barrier preventing enhancements of the maximum oscillation frequency and voltage gain, both of which should be improved for RF transistors. Achieving a high outp...

متن کامل

Graphene Transistors for Ambipolar Mixing at Microwave Frequencies

This work presents a detailed study of the graphene RF mixer in the ambipolar configuration, using quasi-free-standing epitaxial graphene on SiC. Record high conversion gain is achieved through use of optimized growth and synthesis techniques, metal contact formation, and dielectric materials integration. Hydrogen intercalation is utilized to isolate the graphene from the underlying SiC substra...

متن کامل

SiC surface orientation and Si loss rate effects on epitaxial graphene

We have explored the properties of SiC-based epitaxial graphene grown in a cold wall UHV chamber. The effects of the SiC surface orientation and silicon loss rate were investigated by comparing the characteristics of each formed graphene. Graphene was grown by thermal decomposition on both the silicon (0001) and carbon (000-1) faces of on-axis semi-insulating 6H-SiC with a "face-down" and "face...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 13 3  شماره 

صفحات  -

تاریخ انتشار 2013